Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(37): e202304494, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37464980

RESUMO

Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C6 H5 )4 P]2 SbCl5 . In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb3+ and the π electrons of benzene ring (lp-π interaction) serves as an unexpected "bridge" for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic-inorganic hybrid systems.

2.
ACS Nano ; 17(8): 7830-7836, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37039626

RESUMO

Perovskites are promising environmentally sustainable materials for circularly polarized electroluminescence (CPEL). While another chiral nonemissive layer is required for the developed perovskite-based CPEL, we report herein a highly efficient circularly polarized electroluminescence based on a single layer of quasi-2D perovskite with achiral phenethylammonium iodide (PEAI) and chiral S/R-1-(1-naphthyl)ethylammonium iodide (S/R-NEAI) as dual spacer cations. The quasi-2D perovskite was further passivated by carbazole-functionalized phosphonium. The as-fabricated film exhibits not only a circular dichroism (CD) signal but also prominent circularly polarized luminescence (CPL) activity with a maximum photoluminescence dissymmetry factor (glum) of ∼2.1 × 10-3. More importantly, a highly efficient, spin-polarized light-emitting diode (LED) was fabricated based on the in situ passivated quasi-2D perovskite with a peak external quantum efficiency of 3.7% and a maximum electroluminescence dissymmetry factor (gEL) of ∼4.0 × 10-3.

3.
Chem Commun (Camb) ; 59(9): 1116-1124, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36629875

RESUMO

The emerging lead halide perovskites show great potential for their use as emitters in electrically driven light-emitting diodes (LEDs) with external quantum efficiency (EQE) over 25%. While the toxicity of lead and inferior device stability are the main obstacles for their commercialization, replacing Pb2+ with low- or non-toxic metal ions to form low- or zero-dimensional structures provides an alternative approach to effectively tackle these issues. Recently, luminescent lead-free metal halides have been increasingly developed toward eco-friendly and highly efficient electroluminescence. In this feature article, we give a brief overview of recent advances in luminescent lead-free metal halides and their applications in electrically driven LEDs. The challenges and prospects in this field are outlined at the end.

4.
Chemistry ; 28(48): e202201299, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35650011

RESUMO

Circular polarized luminescence (CPL)-active materials attract great attentions owing to their widely applications in 3D optical displays and encrypted transmission. Inspired by the strategies adopted in perovskite based CPL materials, herein, CPL-active hybrids (D)- and (L)-(tert-butyl prolinate)MnCl3 were successfully prepared by assembling chiral D/L tert-butyl prolinate with manganese (II) chloride. Single crystal structures show the as-formed hybrids possess one-dimensional (1D) structure containing linear chains of face-sharing MnCl6 octahedral surrounded by prolinate cations. The 1D Mn(II) hybrids display strong red emission peaked at 646 nm with PLQY of 67.1 % and 57.2 % for d-type and l-type, respectively, representing the highest PLQY for 1D MnII hybrids. Interestingly, the 1D Mn(II) hybrids exhibit prominent circular dichroism (CD) signals and remarkable CPL activity with the dissymmetry factor g of 6.1*10-3 and -6.3*10-3 from 550 to 800 nm for (D)- and (L)-(tert-butyl prolinate)MnCl3 , respectively, owing to the existence of chiral cations. It is worthy noted the obtained g represents the highest value for non-lead organic-inorganic hybrids.


Assuntos
Compostos Inorgânicos , Luminescência , Aminoácidos/química , Dicroísmo Circular , Manganês
5.
Angew Chem Int Ed Engl ; 61(6): e202113450, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837440

RESUMO

As low-dimensional lead-free hybrids with higher stability and lower toxicity than those of three-dimensional lead perovskites, organic antimony(III) halides show great application potential in opt-electronic field owing to diverse topologies along with exceptional optical properties. We report herein an antimony(III) hybrid (MePPh3 )2 SbCl5 with a zero-dimensional (0D) structure, which exhibits brilliant orange emission peaked at 593 nm with near-unity photoluminescent quantum yield (99.4 %). The characterization of photophysical properties demonstrates that the broadband emission with a microsecond lifetime (3.24 µs) arises from self-trapped emission (STE). Electrically driven organic light-emitting diodes (OLEDs) based on neat and doped films of (MePPh3 )2 SbCl5 were fabricated. The doped devices show significant improvement in comparison to non-doped OLEDs. Owing to the much improved surface morphology and balanced carrier transport in light-emitting layers of doped devices, the peak luminance, current efficiency (CE) and external quantum efficiency (EQE) are boosted from 82 cd m-2 to 3500 cd m-2 , 1.1 cd A-1 to 6.8 cd A-1 , and 0.7 % to 3.1 % relative to non-doped devices, respectively.

6.
J Phys Chem Lett ; 12(13): 3288-3294, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33764768

RESUMO

Photoactive metal ions doping is an efficient way to modulate the photophysical properties of perovskite. Herein, we report a zero-dimensional (0D) InCl6(C4H10SN)4·Cl:Sb3+ by doping Sb3+ into InCl6(C4H10SN)4·Cl, which undergoes a significant enhancement of the emission peak at 550 nm with photoluminescence quantum yield boosting from 20% to 90%. Interestingly, a red-shifted emission is observed on InCl6(C4H10SN)4·Cl:Sb3+ upon exposure to ethanol and DMF vapor with the emission peak red-shifted from 550 to 580 and 600 nm, respectively. Furthermore, the transformation is reversed after drying the vapor-exposed InCl6(C4H10SN)4·Cl:Sb3+ at ambient conditions. Detailed characterizations reveal that the crystal packing and structure distortion account for the reversible luminescent vapochromism. Thanks to the superior stability and feasible transformation of InCl6(C4H10SN)4·Cl:Sb3+ at ambient conditions, a DMF sensor was fabricated by coating the mixture of InCl6(C4H10SN)4·Cl:Sb3+ and PMMA into patterned substrate, which exhibits an obvious luminescent change upon release and uptake of DMF and excellent stability and producibility in several cycles.

7.
ACS Appl Mater Interfaces ; 13(12): 14433-14439, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33730482

RESUMO

Highly soluble d8-d10 heteronuclear phosphors afford an alternative approach to achieve high-efficiency organic light-emitting diodes (OLEDs) through a solution process. In this work, four highly phosphorescent d8-d10 heteronuclear complexes with significant Pt-Au interactions were prepared. By judicious selection of sterically hindered and π-conjugated substituents in triphosphine ligands, the phosphorescence is dramatically promoted through effectively prohibiting nonradiative thermal relaxation with an efficiency of 0.94-0.99 in doping films. Exploiting highly emissive Pt-Au complexes as phosphorescent dopants, ultrahigh-efficiency solution-processed OLEDs were attained. The peak current efficiency, power efficiency, and external quantum efficiency are 96.2 cd A-1, 65.0 lm W-1, and 26.4% for the green-emitting PtAu2 phosphor and 68.6 cd A-1, 42.5 lm W-1, and 25.1% for the orange-emitting Pt2Au phosphor, which represent the state-of-art for solution-processed OLEDs based on non-iridium phosphors.

8.
Inorg Chem ; 59(23): 17415-17420, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33211488

RESUMO

The reaction of 3,6-ditert-butyl-1,8-bis(diphenylphosphino)-9-methyl-9H-carbazole (L) with CuBr resulted in the isolation of tetranuclear copper(I) complex Cu4Br4L2 as two colorless crystal morphs, i.e., green-emitting 1G and yellow-emitting 1Y. As demonstrated by X-ray crystallography, the Cu4Br4 moiety in both 1G and 1Y adopts the same chair conformations. When L is bonded perpendicularly to the Cu4 plane, 1G with green emission is obtained, while it gives a yellow emission of 1Y once the L is parallelly bonded to Cu4 plane. Theoretical computational studies suggest that the variation in ligand orientation results in a different degree of structural distortion in triplet state and thus different luminescent energy. Particularly, 1Y undergoes dramatic structural distortion from the ground (S0) to triplet excied state (T1). Interestingly, 1G can be converted into 1Y upon exposed to saturated hexane vapor, which would return to 1G upon exposure to acetonitrile vapor. As demonstrated experimentally and theoretically, the reversible luminescence transformation between 1G and 1Y is ascribed to the variation of ligand L orientations.

9.
ACS Appl Mater Interfaces ; 12(40): 45056-45063, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32909428

RESUMO

The fabrication of efficient and spectrally stable pure-blue perovskite light-emitting diodes (LEDs) has been elusive and remains of great interest. Herein, we incorporate diammonium salts into quasi-2D perovskite precursors for phase control of multiple quantum well structures to yield tunable and efficient emission in the blue region. With detailed characterizations and computational studies, we show that in situ passivation by the diammonium salts effectively modifies the surface energies of quasi-2D phases and inhibits the growth of low-band gap quasi-2D and 3D phases. Such phase control and in situ passivation could afford blue light-emitting perovskite thin films with high photoluminescence quantum efficiencies of, for instance, 75% for the emission peak at 471 nm. Using this perovskite thin film as an emitting layer, spectrally stable pure-blue LEDs with an emission peak at 474 nm and a full width at half-maximum of 26 nm could be fabricated to exhibit a brightness of 290 cd m-2 at 8 V and an external quantum efficiency of 2.17%.

10.
Angew Chem Int Ed Engl ; 59(51): 23067-23071, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32876977

RESUMO

The photophysical tuning is reported for a series of tetraphenylphosphonium (TPP) metal halide hybrids containing distinct metal halides, TPP2 MXn (MXn =SbCl5 , MnCl4 , ZnCl4 , ZnCl2 Br2 , ZnBr4 ), from efficient phosphorescence to ultralong afterglow. The afterglow properties of TPP+ cations could be suspended for the hybrids containing low band gap emissive metal halide species, such as SbCl5 2- and MnCl4 2- , but significantly enhanced for the hybrids containing wide band gap non-emissive ZnCl4 2- . Structural and photophysical studies reveal that the enhanced afterglow is attributed to stronger π-π stacking and intermolecular electronic coupling between TPP+ cations in TPP2 ZnCl4 than in the pristine organic ionic compound TPPCl. Moreover, the afterglow in TPP2 ZnX4 can be tuned by controlling the halide composition, with the change from Cl to Br resulting in a shorter afterglow due to the heavy atom effect.

11.
Nat Commun ; 11(1): 4329, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859920

RESUMO

Scintillation based X-ray detection has received great attention for its application in a wide range of areas from security to healthcare. Here, we report highly efficient X-ray scintillators with state-of-the-art performance based on an organic metal halide, ethylenebis-triphenylphosphonium manganese (II) bromide ((C38H34P2)MnBr4), which can be prepared using a facile solution growth method at room temperature to form inch sized single crystals. This zero-dimensional organic metal halide hybrid exhibits green emission peaked at 517 nm with a photoluminescence quantum efficiency of ~ 95%. Its X-ray scintillation properties are characterized with an excellent linear response to X-ray dose rate, a high light yield of ~ 80,000 photon MeV-1, and a low detection limit of 72.8 nGy s-1. X-ray imaging tests show that scintillators based on (C38H34P2)MnBr4 powders provide an excellent visualization tool for X-ray radiography, and high resolution flexible scintillators can be fabricated by blending (C38H34P2)MnBr4 powders with polydimethylsiloxane.

12.
Sci Adv ; 6(17): eaaz5961, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32426465

RESUMO

Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr3) perovskite hollow NCs. By facile solution processing of CsPbBr3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr3 NCs from green to blue, with high PLQEs of up to 81%.

13.
Angew Chem Int Ed Engl ; 59(33): 14120-14123, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32392395

RESUMO

Zero-dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4 PbMn0.69 Sn0.31 Br8 , in which the organic cation N-benzylhexamethylenetetrammonium (HMTA+ , C13 H19 N4 + ) cocrystallizes with PbBr4 2- , MnBr4 2- , and SnBr4 2- . The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single-crystalline "host-guest" system to exhibit emissions from multiple "guest" metal halide species simultaneously. The combination of these emissions led to near-perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm- to cool-white emissions could be generated by controlling the excitation wavelength.

14.
J Phys Chem Lett ; 10(19): 5836-5840, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31525868

RESUMO

The rich chemistry of metal halide perovskites has enabled various methods of band structure control and surface passivation. Here we report a highly facile and efficient post-treatment approach for precise color tuning of cesium lead halide perovskite nanocrystals (NCs) with enhanced stability. By utilizing a special multifunctional organic ligand, triphenyl(9-phenyl-9H-carbazol-3-yl)phosphonium bromide (TPP-Carz), carbon-halide bond cleavage can be achieved to release halide ions from halogenated solvents in a controlled manner for color tuning of perovskite NCs via ion exchange. Besides controlled release of halide ions for anion exchange, TPP-Carz can effectively passivate the surfaces of perovskite NCs simultaneously. As a result, perovskite NCs prepared by this post-treatment method with tunable colors over the entire visible spectrum have shown significantly improved luminescence and stability in comparison to the ones prepared using reactive anion precursors without surface passivation by TPP-Carz.

15.
J Phys Chem Lett ; 10(19): 5923-5928, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31529944

RESUMO

Organometal halide perovskite materials, in particular colloidal perovskite nanocrystals (NCs), have been investigated extensively as next-generation light-emitting materials. However, producing highly efficient and stable perovskite thin films from colloidal NCs is not trivial, as dissociation of surfactants often occurs during the thin-film formation. Here, we demonstrate a facile solution-processing approach to prepare perovskite nanocomposite thin films by using phosphonium as the capping ligand for methylammonium lead bromide (MAPbBr3) NCs. The photoluminescence and stability of thin films containing in situ formed perovskite NCs were greatly enhanced after phosphonium passivation, with the photoluminescence quantum efficiency reaching 78% and only 5% decrease of the intensity after one month's exposure in ambient conditions. Electrically driven light-emitting diodes (LEDs) based on pristine perovskite neat thin films and organic-perovskite nanocomposite thin films were fabricated, and we observed a 10-fold improvement in the external quantum efficiency of these LEDs (from 0.6% to 6.3%) resulting from the in situ formation of perovskite NCs with phosphonium passivation.

16.
ACS Nano ; 13(2): 2520-2525, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30721023

RESUMO

Scintillators, which are capable of converting ionizing radiation into visible photons, are an integral part of medical, security, and commercial diagnostic technologies such as X-ray imaging, nuclear cameras, and computed tomography. Conventional scintillator fabrication typically involves high-temperature sintering, generating agglomerated powders or large bulk crystals, which pose major challenges for device integration and processability. On the other hand, colloidal quantum dot scintillators cannot be cast into compact solid films with the necessary thickness required for most X-ray applications. Here, we report the room-temperature synthesis of a colloidal scintillator comprising CsPbBr3 nanosheets of large concentration (up to 150 mg/mL). The CsPbBr3 colloid exhibits a light yield (∼21000 photons/MeV) higher than that of the commercially available Ce:LuAG single-crystal scintillator (∼18000 photons/MeV). Scintillators based on these nanosheets display both strong radioluminescence (RL) and long-term stability under X-ray illumination. Importantly, the colloidal scintillator can be readily cast into a uniform crack-free large-area film (8.5 × 8.5 cm2 in area) with the requisite thickness for high-resolution X-ray imaging applications. We showcase prototype applications of these high-quality scintillating films as X-ray imaging screens for a cellphone panel and a standard central processing unit chip. Our radiography prototype combines large-area processability with high resolution and a strong penetration ability to sheath materials, such as resin and silicon. We reveal an energy transfer process inside those stacked nanosheet solids that is responsible for their superb scintillation performance. Our findings demonstrate a large-area solution-processed scintillator of stable and efficient RL as a promising approach for low-cost radiography and X-ray imaging applications.

17.
Inorg Chem ; 57(15): 9175-9181, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29989800

RESUMO

The reactions of MnBr2 and ethane-1,2-diylbis(diphenylphosphine oxide) (dppeO2) in dichloromethane-methanol solutions gave colorless crystals with the general chemical formulas [MnBr2(dppeO2)] n (1), [MnBr2(dppeO2)(DMF)] n (1a), [Mn(dppeO2)3][MnBr4] (2), and Mn2Br4(dppeO2)2 (3) depending on the crystallization conditions. Compounds 1 and 1a display one-dimensional chain structures composed of Mn(II) ions linked by bridging dppeO2 to exhibit tetrahedral (1) or trigonal-bipyramidal (1a) coordination geometry, whereas 3 exhibits a cyclic dinuclear structure with two Mn(II) centers bridged by double dppeO2 to adopt tetrahedral geometry. Compound 2 consists of octahedrally coordinated cation [Mn(dppeO2)3]2+ and tetrahedrally arranged anion [MnBr4]2-. While 1 and 3 in crystalline and powder states are highly luminescent with green emission bands centered at ca. 510 nm, 2 shows intense orange luminescence peaking at 594 nm. Upon exposure of 1 to N, N-dimethylformamide vapor, the green emission centered at 510 nm is converted to red luminescence peaking at 630 nm, ascribed to the formation of DMF-coordinated compound 1a with a trigonal-bipyramidal ligand field, as demonstrated by X-ray crystallography. Red-emitting 1a could be reverted to the original green-emitting 1 with a tetrahedral ligand field upon heat at 160 °C, and such a reversible conversion could be perfectly repeated for several cycles. A new mechanism of luminescent vapochromism is thus proposed because of the reversible conversion of ligand fields in manganese(II) complexes.

18.
Fitoterapia ; 127: 109-114, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29427594

RESUMO

A novel dihydroflavonol unprecedentedly with a prenyl group at C-2, nigragenon A (1), four new sanggenon-type flavonones, nigragenons B-E (2-5), along with six known isoprenylated flavonoids (6-11) were isolated from the twigs of Morus nigra. Their structures were elucidated through extensive analysis of spectroscopic data. Interestingly, compound 1 was the first reported biogenetic precursor of sanggenon-type flavanones and the biogenetic pathway from 1 to sanggenol F was proposed. The PPAR γ agonistic activity was investigated in HEK293 cells using dual luciferase reporter assay. Compounds 2, 4, 7, and 9 showed obvious agonistic activities on PPAR γ, and compound 2 was a potential PPAR γ partial agonist. Moreover, the preliminary structure-activity relationships for the tested compounds were discussed.


Assuntos
Flavonoides/isolamento & purificação , Morus/química , PPAR gama/agonistas , Células HEK293 , Humanos , Estrutura Molecular , Extratos Vegetais/química , Prenilação
19.
Adv Mater ; 29(10)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28009462

RESUMO

Highly phosphorescent (Ph4 P)2 [MnBr4 ] as a low-cost and environmentally benign emitting material achieves peak current efficiency of 25.4 cd A-1 and external quantum efficiency (EQE) of 7.2% for nondoped organic light-emitting diodes, and peak current efficiency of 32.0 cd A-1 and EQE of 9.6% for doped devices with 20% (Ph4 P)2 [MnBr4 ]:27% TCTA:53% 6DCZPPY as a doping emitting layer.

20.
Dalton Trans ; 46(3): 865-874, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28001160

RESUMO

Cationic PtAu2 heterotrinuclear complexes [PtAu2(dpmp)2(C[triple bond, length as m-dash]CR)2]2+ (dpmp = bis(diphenylphosphinomethyl)phenylphosphine, R = aryl) of aromatic acetylides were prepared. The PtAu2 structures are supported through doubly bridging dpmp and stabilized by a significant Pt-Au interaction. They are highly phosphorescent in fluid CH2Cl2 solution (Φem = 23.5%-78.9%), the solid state (Φem = 15.4%-70.2%), the PMMA film (Φem = 39.9%-71.7%) and the doping film of 61% TCTA : 31% OXD-7 : 8% PtAu2 complex (Φem = 16.9%-67.9%). The phosphorescence arises mainly from 3[π (C[triple bond, length as m-dash]CR) → π* (dpmp)] 3LLCT and 3[π (C[triple bond, length as m-dash]CR) → s/p (PtAu2)] 3LMCT triplet excited states for carbazole-acetylide complexes, whereas other complexes display a 3LLCT character mixed with noticeable PtAu2 centered 3[d → s/p] parentage. Utilizing a mixed host composed of hole-transporting TCTA and electron-transporting OXD-7 doped with 8% PtAu2 species as a light-emitting layer and CuSCN as a hole-transporting layer through an orthogonal solution process, the devices exhibit highly efficient electrophosphorescence with the highest current efficiency (CEmax) of 51.7 cd A-1 and external quantum efficiency (EQEmax) of 14.5%. The efficiency roll-off is small in the practical brightness range of 500-5000 cd m-2. The PtAu2 complexes with carbazole-acetylides display a higher electroluminescence efficiency ascribed to their better hole-transporting character as well as more facile energy transfer from mixed host materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...